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ABSTRACT: Organic cyclic carbonates (ethylene and
propylene carbonate) are shown to be viable greener solvents
for use in Heck reactions, offering a highly effective alternative
to traditionally used dipolar aprotic solvents such as NMP,
DMF, and DMAc.
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■ INTRODUCTION

The importance of utilizing greener solvents has permeated
into all aspects of synthetic chemistry, and palladium-catalyzed
Heck reactions are no different.1,2 Heck reactions are
ubiquitous in the pharmaceutical industry in both medicinal
chemistry and drug manufacture.3 Traditionally, cross-coupling
reactions are preferentially carried out in highly dipolar aprotic
solvents, e.g., N,N-dimethylformamide (DMF), N-methylpyr-
rolidone (NMP), and N,N-dimethylacetamide (DMAc).4

Although these solvents offer high performance in Heck
reactions, this is only one of a number of considerations that
should be prioritized by the contemporary chemist. In a typical
reaction, the majority of the material input (and subsequently
much of the associated waste) is a combination of the reaction
solvent and any additional solvents used for the purification of
the product.5 The impact of solvents on the environment, in
terms of both pollution and depletion of resources must
therefore be considered. The amide solvents, NMP and DMF
especially, present appreciable hazards to human health.6 It is
also likely that under REACH (Regulation, Evaluation,
Authorization and restriction of CHemicals),7 and other
chemical-related legislation some, if not all, of these solvents
will be subject to authorization or restrictions in the future. The
related Suzuki cross-coupling reaction is very amenable to
alcohol solvents, which are generally regarded as green reaction
media.8−10 However, our trial reactions with alcohol solvents
showed that the Heck reaction proceeds slowly, if at all, in
protic solvents. As we seek alternative solvents, we should be
aware of incentives to encourage the use of biobased chemicals.
The EU is prioritizing the uptake of the major classes of
renewable chemicals, including solvents, as reflected in the
production of new standards and certification schemes.11

Accordingly, the substitution of existing dipolar aprotics in
favor of more benign alternatives, such as cyclic carbonates, is
greatly beneficial (Figure 1).
In order to justify a replacement solvent, reaction efficiency

must not be compromised to simply reduce the environmental

burden. Inferior reaction performance is not appealing on the
grounds of increased waste and energy consumption, not to
mention any economic implications. Previous work investigat-
ing greener solvents for Heck reactions has included the use of
water and supercritical CO2; however, such systems are not
ideal as they often show reduced activity requiring longer
reaction times. This also leads to significantly more catalyst or a
modified catalyst being used.12−15 The search for greener
solvent replacements can be systemized and provide additional
justifications for any proposed substitution.16,17 Identification of
solvent properties that promote the efficiency of Heck reactions
is essential as it will enable informed choices for alternative
solvents to be made. Until now, a detailed study correlating
solvent properties with performance for the Heck reaction did
not exist. In this paper, a systematic approach has been applied
to the optimization of solvents properties for Heck reactions,
including both reaction efficiency and green credentials of the
solvents. This work has highlighted two greener alternatives to
traditional dipolar aprotic solvents in Heck coupling reactions.

■ MATERIALS AND METHODS
Rate of Reaction Screening Tests. Into a 250 mL round-

bottomed flask, the following reagents were measured: iodobenzene
(30 mmol), methyl acrylate (30 mmol), and triethylamine (30 mmol).
Solvent 30 mL was then added, and the flask heated with stirring to
373 K. An excess of solvent was used in these reactions in order for the
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Figure 1. Structures of (a) propylene carbonate and (b) ethylene
carbonate.
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reaction to proceed at a speed that could be accurately monitored.
Once the flask had been heated to the required temperature,
Pd(OAc)2 (0.1 mol %) catalyst was added. For control experiments,
no catalyst was added. The reaction was monitored with samples taken
at designated intervals. The reaction was allowed to proceed until the
yield had reached >50%. The reaction was monitored by GC-FID
using diethyl succinate as a standard.
Reactions with Other Aryl Halides. Into a 25 mL round-

bottomed flask, the following reagents were measured: aryl halide (15
mmol), methyl acrylate (1.2 mol eqv), and triethylamine (1.2 mol
eqv). A total of 6 mL of solvent was then added, and the flask heated
with stirring to 373 K. Once the flask had been heated to the required
temperature, Pd(OAc)2 (0.3 mol %) catalyst was added. For control
experiments, no catalyst was added. Reaction conversions were
determined by H1 NMR spectroscopy. For purification, after
completion, the reaction product was extracted from the solvent
using 3 mL × 5 mL ethyl acetate. The organic fractions were
combined and the solvent removed in vacuo. Purification was carried
out by silica gel column chromatography using hexane:ethyl actate
(99:1). Characterization by NMR and mass spectrometry was
consistent with existing literature examples.

■ RESULTS AND DISCUSSION
First, a screening of the reaction rates of a model Heck reaction
at 100 °C was undertaken with the following conventional
dipolar or polarizable solvents and neoteric solvents: cyclo-
hexanone, p-cymene, DMF, dimethyl sulfoxide (DMSO),
ethylene carbonate, NMP, propylene carbonate, and toluene
(Scheme 1). As shown from their entries in the GlaxoSmithK-

line (GSK) solvent selection guide (Table 1), toluene and the
dipolar aprotic solvents each have one area of concern (each
highlighted in red) regarding either their safety during use or
their environmental impact after use.18 Cyclohexanone, ethyl-
ene carbonate, and propylene carbonate show no areas of
concern, maintaining good to excellent ratings across all of the
criteria. Cyclic ketone and carbonate solvents have been
demonstrated to be satisfactory solvents in applications usually
dependent on more toxic dipolar aprotics, which suggested they
may be applicable to Heck reactions.19,20 There was no data

available for p-cymene, but as a successful biobased replacement
for toluene its selection was justified.16

Organic carbonates, particularly cyclic carbonates, have
significant benefits as eco-friendly solvents due to their
biodegradability, low vapor pressure, odor levels, and
toxicities.2,22 Carbonates are also dipolar aprotic solvents and
available on an industrial scale at relatively low costs.23,24

Furthermore, the synthesis of organic carbonates is also
becoming greener.25−27 Eghbali et al. have developed a highly
efficient method to convert alkenes (including bioethene from
ethanol) and CO2 directly into cyclic carbonates.28 This
sustainable synthesis of carbonates using renewable feedstocks
increases the environmental benefits and long-term potential of
using these solvents.
From the results of solvent screening, the initial rate of

reaction to give methyl cinnamate was plotted against the
different Kamlet−Taft solvent parameters (Table SI-1,
Supporting Information). It was found that the initial rate
was proportional to the dipolarity of the solvent, as gauged with
the Kamlet−Taft solvatochromic π* scale (Figure 2 and Table

SI-1, Supporting Information).29,30 The complementary
parameter describing hydrogen bond-accepting ability (β) was
found to be statistically insignificant. No protic solvents were
suitable for this study to evaluate the role of hydrogen bond
donating ability (α), although trial reactions in refluxing t-
butanol were incredibly slow (i.e., 6% conversion, in 45 h). The
linear relationship based on π* is statistically sound (p-value of
0.0025) except for DMF, which is a significant outlier. There is
no obvious reason why this should be so, but ultimately,
considering its reproductive toxicity, the rate enhancement
achieved with DMF is not substantial enough to justify its use.
The observed solvent effect is consistent with the common

proposal that alkene insertion by palladium is the rate-
determining step of the Heck reaction with aryl iodides.31−34

The polarization of the alkene results in a separation of charge
that is presumably best stabilized in highly dipolar solvents,
thus the reaction is accelerated by solvents like DMF. The
dependence of the reaction rate on the dipolarity of the solvent
meant that neither toluene nor p-cymene were suitable solvents
for this Heck reaction. Cyclohexanone is more dipolar than an
aromatic solvent but still cannot compete with NMP, DMF, or
similar solvents. However, ethylene carbonate (π* = 0.99) and
propylene carbonate (π* = 0.90) did promote high

Scheme 1. Model Heck Reaction Used To Determine Rates
of Reaction in Different Solvents

Table 1. Greenness of Solvents Used in the Heck Reaction21

solventa wasteb E-impactb healthb flammabilityb reactivityb

cyclohexanone 6 8 6 8 9
DMF 4 6 2 9 9
DMSO 5 5 7 9 2
ethylene
carbonate

6 7 5 10 9

NMP 5 6 3 9 8
propylene
carbonate

6 7 5 8 9

toluene 6 3 4 4 10
aNo data was available for p-cymene. bFull explanation of the terms
used can be found in the Supporting Information.

Figure 2. Relationship between solvent dipolarity and the natural
logarithm of the initial reaction rate.
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productivity. Both ethylene and propylene carbonate have
higher boiling points (and lower vapor pressures) compared to
NMP or DMF, which lowers atmospheric emissions, and are
certainly safer to handle and less toxic in most respects. Also
consisting entirely of carbon, hydrogen, and oxygen, after use
the cyclic carbonates create no NOx or SOx air pollution upon
incineration. The primary disadvantage of ethylene carbonate is
that it is a solid at room temperature, but propylene carbonate
has a similar melting point to DMF. Overall ethylene carbonate
and propylene carbonate are appealing solvents, especially as
replacements for NMP and DMF in Heck coupling reactions.
To further explore the scope and possible limitations of

ethylene and propylene carbonate as green alternative solvents,
additional Heck reactions were carried out using a range of
different substituted aryl halides (Table 2). All reactions were

carried out at 100 °C with 0.3 mol % of Pd(OAc)2. The solvent
NMP was tested alongside the carbonate solvents to give a
benchmark for yields achieved using conventional Heck
solvents.
Various substituent groups on iodobenzene were tested in

order to determine any changes that could arise due to the use
of different solvents (Table 2, entries 1−4). Results indicated
that comparable or superior conversions were achieved when
using carbonate solvents against NMP. The same procedure of
separation and purification of product was also successfully
applied to each solvent (NMR of purified products, Figure SI-2,
Supporting Information). Encouragingly, when using ethylene
carbonate, the majority of conversions were higher than those
achieved for NMP. Reactions were also conducted using less
reactive substituted aryl bromide reagents (Table 2, entries 5−
9).35 The performance of propylene carbonate was comparable
to NMP under the conditions tested. In many cases, ethylene
carbonate outperformed NMP and resulted in 100% con-
versions in the majority of aryl bromides tested (entries 6−8).
Most noteworthy was the cross-coupling of bromobenzene in
ethylene carbonate, which gave a 40% conversion to the

product. This was in significant contrast to both NMP and
propylene carbonate, which gave no conversion (entry 5). This
is a difficult reaction to initiate, and the success of ethylene
carbonate as a solvent establishes it as a suitable replacement
solvent for these types of reactions.

■ CONCLUSION

This work has illustrated that it is the solvent polarity that is the
driving force for effective Heck catalysis, and it is this property
that should be considered when developing greener reaction
methods in the future. The solvent studies presented have also
highlighted that cyclic carbonates have great potential for use as
greener solvents in Heck reactions; encouragingly, in many
cases, these solvents may outperform traditional dipolar aprotic
solvents such as NMP. Further work will include more testing
of different substrates in the Heck reaction, including substrates
with electron-donating groups and also the development of
purification procedures suited specifically to the cyclic
carbonate solvents.
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